Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers.

نویسندگان

  • Charitha M de Silva
  • Jimmy Philip
  • Kapil Chauhan
  • Charles Meneveau
  • Ivan Marusic
چکیده

The scaling and surface area properties of the wrinkled surface separating turbulent from nonturbulent regions in open shear flows are important to our understanding of entrainment mechanisms at the boundaries of turbulent flows. Particle image velocimetry data from high Reynolds number turbulent boundary layers covering three decades in scale are used to resolve the turbulent-nonturbulent interface experimentally and, for the first time, determine unambiguously whether such surfaces exhibit fractal scaling. Box counting of the interface intersection with the measurement plane exhibits power-law scaling, with an exponent between -1.3 and -1.4. A complementary analysis based on spatial filtering of the velocity fields also shows power-law behavior of the coarse-grained interface length as a function of filter width, with an exponent between -0.3 and -0.4. These results establish that the interface is fractal-like with a multiscale geometry and fractal dimension of Df≈2.3-2.4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittency in the Outer Region of Turbulent Boundary Layers

Characteristics of external intermittency in the outer region of turbulent boundary layers are presented based on single-point hotwire measurements. The distinction between the turbulent and non-turbulent state of the flow is marked by applying a threshold on instantaneous kinetic-energy, and this criteria is found to be adequate for this study. Mean intermittency profiles are in consistent agr...

متن کامل

Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows

The properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows are explored both experimentally and theoretically. Available highquality data reveal a dynamically relevant four-layer description that is a departure from the mean profile four-layer description traditionally and nearly universally ascribed to turbulent wall flows. Each of the four layers is charac...

متن کامل

Introduction: scaling and structure in high Reynolds number wall-bounded flows.

On bou *A According to Lighthill (1995), Prandtl’s (1904) boundary layer has had the same transforming effect on fluid dynamics as Einstein’s 1905 discoveries had on other parts of physics, which, by the way, were celebrated in 2005 as the World Year of Physics. That the boundary layer becomes turbulent was formally known to Blasius (1908), though, of course, the origin of turbulence in a pipe ...

متن کامل

Scaling of the turbulent/non-turbulent interface in boundary layers

Scaling of the interface that demarcates a turbulent boundary layer from the non-turbulent free stream is sought using theoretical reasoning and experimental evidence in a zero-pressure-gradient boundary layer. The data-analysis, utilising particle image velocimetry (PIV) measurements at four different Reynolds numbers (δuτ/ν = 1200–14 500), indicates the presence of a viscosity dominated inter...

متن کامل

High Reynolds number effects in wall turbulence

A review of recent discoveries from high Reynolds number studies of turbulent boundary layers is given. The emergent regime of very large-scale structures in the logarithmic region and their subsequent influence on the near-wall cycle challenges many of the previously held assumptions regarding scaling of turbulent boundary layers at high Reynolds numbers. Experimental results are presented to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 111 4  شماره 

صفحات  -

تاریخ انتشار 2013